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Abstract 
In the context of robust computational geometry we focus on the problem of computing and checking 

Gabriel graphs with algorithms that are not affected by degenaracies and have low arithmetic demand. A 
simple and practical linear-time algorithm is presented that constructs the Gabriel Graph of a finite point 
set on the plane from its Delaunay diagram. The degree of the algorithm, i.e. a measure of the arithmetic 
precision required to carry out exact computations, is evaluated and proved to be optimal. The problem 
of certifying the correctness of an algorithm that computes the Gabriel graph is also investigated and an 
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1    Introduction and Overview 
In many problems of pattern recognition and computational morphology, such as clustering and compu- 
tational approaches to perception, one is given a set of points on the plane and is asked to display the 
underlying shape of the set by constructing a graph whose vertices are the points and whose edges are seg- 
ments connecting pairs of points. In clustering it is desired to have an algorithm that connects two points 
that belong to the same cluster. In computational perception we would like an algorithm that joins pairs 
of points so that the resulting graph is perceptually meaningful in some sense (for more details on these 
problems see also   [25]). 

Several graphs that capture the notion of shape of a set S of points on the plane have been described in the 
literature. In the survey by Toussaint [15] such graphs are classified by using the notion of proximity between 
sets of points. In a proximity graph points are connected by edges if and only if they are deemed close by some 
proximity measure. It is the measure that determines the type of graphs that result. Minimum spanning 
trees [22], Gabriel graphs [11], relative neighborhood graphs [26], Delaunay diagrams (often referred to as 
Delaunay triangulations if all internal faces are three-cycles) [22] , all describe different notions of closeness 
between the points of the input point set. By exploiting the inclusion relationship between these global 
descriptors of closeness (the Delaunay diagram is a supergraph of the Gabriel graph that is a supergraph of 
the relative neighborhood graph that is a supergraph of the minimum spanning tree), the shape of a set of 
points can be analyzed by considering the spectrum of progressively less detailed descriptions when going 
from the Delaunay diagram to the minimum spanning tree (see, e.g. [16, 23]). Clearly, fast and reliable 
algorithms to construct the wanted proximity subgraphs of the Delaunay diagram play a crucial role within 
this approach. 

The problem of efficiently computing subgraphs of the Delaunay diagram of a set of points is the subject of 
a rich body of literature in computational geometry. One of the first papers is due to Cheriton and Tarjan [6], 
who show a 0(n)-time algorithm to compute an Euclidean minimum spanning tree from a Delaunay diagram 
with n vertices. The Gabriel graph can be computed from the Delaunay diagram in 0(n)-time by using the 
algorithm of Matula and Sokal [19]. The first 0(n log n)-time algorithm to compute a relative neighborhood 
graph from a Delaunay diagram is due to Supowit [24], who improves the previous 0(n2)-time bound showed 
by Toussaint [26]. Jaromczyk and Kowaluk [13] show that the relative neighborhood graph can be computed 
from the Delaunay diagram in 0(na(n, n))-time, where a(-) is the inverse of the Ackermann's function. The 
bound is reduced to O(n) by Jaromczyk, Kowaluk, and Yao [14]. A different proof of this last result is given 
by Lingas [17]. For a complete survey on algorithms that compute proximity drawings see [15]. 

Existing algorithms, however, often accomplish the asymptotically optimal efficiency at the expenses of 
simplicity; also they often rely on simplifying assumptions on the input configuration (no three points are 
collinear and no four points are co-circular) that make them fail when implemented in practice. For example, 
the linear-time algorithm of [14] is based on complex UNION-FIND data structures and assumes that all 
internal faces of the Delaunay diagram are three-cycles. 

On the other hand, issues of robustness, experimentation, and implementation have become central to the 
development of geometric algorithms. Simplifying assumptions ruling out degenerate configurations of the 
input and an excessive attention to the asymptotic performance have in fact considerably limited the desired 
technology transfer from computational geometry to applied fields like robotics, computer graphics, pattern 
recognition, and GIS. To overcome such discomfort, a considerable effort is being invested in re-visiting 
classical computational geometry problems and in re-designing simple, effective and reliable solutions for 
such problems. A limited list of papers that are devoted to robust computational geometry includes [20, 1, 
5, 4, 7, 10, 8]. 

In this paper, we re-visit the problem of efficiently computing and checking the Gabriel graph of a set 
of points S. In the context of methodologies intended to confer robustness to geometric computation, we 
analyze the efficiency of the proposed algorithms within a realistic model, in which the arithmetic precision 
that is needed to carry out exact computation is relevant. To this aim, we adopt the concept of degree 
of an algorithm [18], which characterizes, up to a small additive constant, the number of bits needed by a 
geometric algorithm to be error free, i.e. to construct topologically consistent outputs even in the presence 



of degenerate configurations of the input. 
The main contributions of this paper are listed below. 

• We present a lower bound to the degree of the problem of computing the Gabriel graph of a set^ of 
points from its Delaunay diagram. The technique to achieve the lower bound consists in analyzing 
the complexity of the geometric predicates that must be evaluated by any algorithms that correctly 
solve the problem. We show that the geometric tests executed by such algorithms are multivariate 
polynomials of degree 2. This means that if the input points are represented by pairs of b-bit integers, 
a correct implementation of the primitives that execute the geometric tests require to handle integers 
of at most 26 + 0(1), where the constant 0(1) depends on the number of terms in the polynomial to 

be evaluated. 
• We study the efficiency of existing algorithms that compute the Gabriel graph of a set of points from its 

Delaunay diagram. We compare a brute-force 0(n2)-time approach to the well-known 0{n logn)-time 
algorithm by Matula and Sokal [19] that constructs the Gabriel graph from the Delaunay diagram in 
two steps. In the first step the Voronoi diagram is computed from and the coordinates of its vertices 
are stored with exact arithmetic, i.e. as rational numbers (pairs of integers). In the second step all 
edges in the Delaunay diagram that do not intersect the corresponding dual edge are deleted. The 
resulting graph is the Gabriel graph. We show the existence of a sharp trade off between computational 
efficiency and degree required to carry out exact computation. Namely, while the brute-force method 
has optimal degree 2, the algorithm by Matula and Sokal has degree 6. 

• We present a new characterization of Gabriel graphs in terms of Delaunay diagrams. We show two 
different applications of our characterization. The first application reconciles robustness with efficiency 
by providing a linear-time, optimal-degree algorithm that computes the Gabriel graph of a set of points 
on the plane from its Delaunay diagram. The algorithm is robust and easy to implement. Also, it is 
fast in practice, requiring at most two geometric tests to determine whether an edge of the Delaunay 
diagram belongs to the underlying Gabriel graph. 

• As a second application of our characterization, we study a geometric program checking problem. 
Namely, Let V be a program whose input is a finite set of distinct points on the plane and whose 
output 0{S) is claimed to be the Gabriel graph of S. We present a checker for V, i.e. a program 
that analyzes 0{S) and either certifies its correctness or returns a whitness that 0{S) is not a Gabriel 
graph. We present an optimal-degree linear-time checker. We show that our procedure satisfies the 
requirements of correctness, simplicity, and efficiency invocated by Mehlhorn et al. [20] as mandatory 
for effective geometric checkers. 

Furthermore, as a side effect of the lower bounds techniques presented in this paper, a lower bound on 
the degree of the segment intersection problem is established. 

2    Preliminaries 
We give first some basic geometric definitions and notation. We then briefly describe the notion of degree of 
a geometric algorithm. For more details the reader is referred to [22] and to [18]. 

2.1    Voronoi Diagrams, Gabriel Graphs, and Delaunay Diagrams 
Let S be a finite set of n distinct points on the plane; we assume n > 2. The locus of points of the plane 
that are closer to a point p,- G S than to any other pj G S is the Voronoi polygon of p,- and is denoted by 
V{i). V(i) is a convex polygonal region (possibly unbounded) given by the intersection of n - 1 half-planes 
and having at most n - 1 sides. The Voronoi diagram of S is the planar subdivision defined by the union of 
the 7i Voronoi polygons V(i) associated to each p, G S. Figure 1 (a) shows a set S and its Voronoi diagram. 
The vertices and deges of V(S) are called Voronoi vertices and Voronoi edges, respectively. 



The Delaunay diagram of S, denoted by D{S), is the straight-line dual of V{S), i.e. the planar subdivision 
obtained by drawing a straight-line segment between each pairs of points of S whose Voronoi polygons share 
an edge. If S does not contain degeneracies, i.e. no four points S are co-circular and no three points of S are 
collinear, then all internal faces of D{S) are three-cycles. A Delaunay diagram such that all internal faces 
are three-cycles is often referred to as a Delaunay triangulation. The vertices and edges of D(S) are called 
Delaunay vertices and Delaunay edges, respectively. Given an edge (u, v) £ D(S), we will often need to refer 
to the edge of V(S) shared by the Voronoi polygons V(u) and V(t>); we call such edge the dual edge of (u, v). 
An example of a Delaunay diagram is shown in Figure 1 (b), where the Delaunay edges are solid lines and 
the underlying Voronoi edges are dotted lines. Notice that a Delaunay edge and its dual edge may or may 
not intersect. If they intersect, the intersection point is the midpoint of the Delaunay edge [21]. 

The Gabriel graph [11] of 5, denoted by GG(S), is the planar subdivision obtained with the following 
rule: Two vertices u, v £ S are connected by a straight-line segment if and only if 

d2(u, v) < d?(u, w) + d2(v, w), for all w £ S, w ^ u, v. 

An equivalent definition of GG{S) is that u and v are connected by a straight-line segment if and only 
if the disk D[u, v] having u and v as antipodal points is empty, i.e. D[u, v] does not contain any other 
point of S - {u, v}. D[u, v] is also called the Gabriel disk of u and v and it is assumed to be a closed set. 
An example of a Gabriel graph is depicted in Figure 1, where also the Gabriel disk of an edge (u,v) is 
represented. Matula and Sokal [20] prove that the Gabriel graph is a subgraph of the Delaunay diagram, 
i.e. every straight-line segment representing an edge of GG(S) is also an edge of D(S). In the same paper, 
an elegant characterization of those edges of D(S) that belong to GG{S) is also given. To present such 
characterization we need a preliminary definition: Two straight-line segments are said to properly intersect 
if they share a point that is not one. of their endpoints. 

Theorem 1 [19] Let e be and edge of D(S) and let ev be the dual edge of e. Edge e belongs to GG{S) if 
and only if e and ev properly intersect. 

2.2    Degree of Geometric Algorithms 
In the next sections we will be measuring the efficiency of geometric algorithms within a finer framework 
than the "big-Oh" analysis. To this aim we adopt the notion of degree that was first introduced in [18] and 
independently in [3] as a measure of the arithmetic precision needed to carry out exact computation during 
the execution of geometric algorithms. For reasons of space we give here only the basic definitions. The 
reader is referred to [18] for a more detailed description of the concepts in this section. 

A geometric algorithm executes computations of two types: tests (also called predicates) and construc- 
tions. Tests are associated with branching decisions in the algorithm that determine the flow of control, 
constructions produce the output data of the algorithm. While approximations in the execution of construc- 
tions are acceptable as long as their maximum absolute error does not exceed the resolution required by 
the application (such as spacing of raster lines in graphics), approximations in the execution of tests may 
produce an incorrect branching of the algorithm and give rise to structurally incorrect results. Therefore, 
tests are much more critical, and their execution must be carried out with complete accuracy. The degree of 
a geometric algorithm characterizes the complexity of the test computations that the algorithm executes. 

We consider algorithms that evaluate multivariate polynomials over their variables. A primitive variable 
is an input variable of the algorithm and has conventional arithmetic degree 1. Input variables are reasonably 
assumed to be expressed with b bits, for some small integer 6. The arithmetic degree of a variable v is the 
arithmetic degree of the multivariate polynomial E that computes v. The arithmetic degree of E is the 
maximum (in the homogeneous case, the common) arithmetic degree of its monomials. The arithmetic 
degree of a monomial is the sum of the arithmetic degrees of its variables. 

We say that an algorithm has degree d if its tests involve the evaluation of multivariate polynomials of 
arithmetic degree d. An immediate consequence of the definition is that if an algorithm has degree d and its 
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Figure 1: (a) A Voronoi Diagram, (b) A Delaunay diagram, (c) A Gabriel graph. 

input variables are 6-bit integers, then all the test computations can be carried out with at most db + 0(1) 
bits. This justifies our use of the degree of an algorithm to characterize the precision required to execute 
error-free tests. 

We say that a problem n has degree d if any algorithm that solves II has degree at least d. In [18] it is 
proven that the degree of the nearest neighbor problem is 2. An immediate implication of this resultis the 
following. 

Corollary 1 Let u, v, and w be three points of the plane. The problem of determining whether w is closer 
to u or to w has degree 2. 

3    The Degree of Computing Gabriel Graphs 
We first study the degree of the problem of computing a Gabriel graph from a Delaunay diagram. Then we 
analyze the performance of existing algorithms that solve such problem and show a sharp trade off between 
their asymptotic behavior and the arithmetic precision needed to correctly evaluate the predicates. 

3.1    Lower bound 
The study of the lower bound is based on showing that the computation of a Gabriel graph from a Delaunay 
diagram has the same degree as the problem of correctly testing whether two segments properly intersect. In 
fact, for Theorem 1, the problem of computing a Gabriel graph is equivalent to testing for each edge (u, v) 
of the Delaunay diagram, whether (u, v) properly intersects its dual Voronoi edge. 

The next two lemmas are devoted to define a lower bound on the degree of the segment intersection 
problem. Let w, be a point of the plane and let s be a straight-line segment with endpoints u and v. 
Assuming that s is oriented from u to v, the which-side-test(w,s) consists of asking whether w lies to the left, 
to the right, or on segment s. 



Lemma 1   The which-side-test(w,s) can be executed on primitive variables with optimal degree 2. 

Sketch of proof: Let u = (xu,yu), v = (z„,j/„), and w = (xw,yw). It is well known (see, e.g. [22]) that 
executing the which-side-test(w,s) is equivalent to determining the sign of the following determinant. 

xu    yu    1 
xv    Vv    1 

= XuVv - XvVu - xwyv + xvyw + xwyu - xuyu 

Notice that A is a multivariate polynomial of degree 2 if all variables are assumed to be primitive. It 
remains to prove that degree 2 is optimal. Suppose that one could execute the which-side-test (w,s) with a 
degree 1 procedure, then he/she would also have a degree 1 procedure to determine the sign of determinant 
A. We show below that A cannot be expressed as the product of two degree 1 polynomials of the variables 
xw,yw,xu,yu,xv,yv Which implies that executing the test with degree 2 is optimal. 

Suppose that there existed constants a',a",b',b",c',c"\d',d",e',e",/',/" such that: 

XuVv - xvyu - xwyv + xvyw + xwyu - xuyw = 
(a'xu + b'yu + c'xv + d'yv + e'xw + f'yw) ■ (a"xu + b"yu + c"xv + d"yv + e"xw + f"yw). 

The above equality implies a'a" = 0, since there cannot be a term a'a"x\. However, either a! or a" 
is not 0 because of nonzero terms having iuasa factor. Assume, w.l.o.g. that a1 ± 0. This implies that 
b" = c" = 0, since, there are not terms of the type xuyu and of the type xuxv. As a consequence, the constant 
b', and c' are not 0, since there are terms having as a factor yu and xv, respectively. However, because of 
the term xvyu, we should have either b'c" ^ 0 or c'b" ^ 0, a contradiction. Q 

The above lemma assumes that the entries of the determinant are primitive variables, each of degree 1; 
since A is an homogeneous multivariate polynomial, the overall degree is the sum of the degrees of the two 
primitive variables involved in each of the terms of A. Clearly, the degree becomes higher if the terms of 
A contain non-primitive variables. We will present later an example of a which-side-test that requires the 
evaluation of a degree 6 multivariate polynomial. 

Lemma 1, allows us to prove the following. 

Lemma 2   Testing whether two segments on the plane properly intersect has degree 2. 

Sketch of proof: Let s' and s" be two segments on the plane and let w', v', u", and v" be the endpoints 
of s' and s", respectively. Segments s' and s" properly intersect if and only if the following two conditions 
are verified: (i) u' and v' are on opposite sides of s" and (ii) u", and v" are on opposite sides of s'. Thus 
if one had a degree 1 procedure to test whether s' and s" properly intersect, he/she would have a degree 1 
procedure to execute the following four tests: which-side-test (u',s"), which-side-test (v',s"), which-side-test 
(u",s'), and which-side-test (v",s'), contradicting Lemma 1. D 

Lemma 2 and Theorem 1 give rise to the main result of this section. 

Theorem 2 The problem of computing the Gabriel graph of a set of points on the plane from its Delaunay 
diagram has degree 2. 

In the next section we prove that the lower bound established by Theorem 2 is tight. To this aim we 
introduce a new geometric test primitive, and show that by using it, an optimal degree algorithm can be 
designed. We also show that computing the Gabriel graph by using the which-side-test instead, gives rise to 
a high degree algorithm. 

3.2    The which-side-test vs. the in-Gabriel-disk-test 
An optimal-degree algorithm can be readily designed by making use of the following geometric primitive. 
Given a segment s and a point p on the plane, the in-Gabriel-disk-test (p,s) verifies whether v is in the disk 
having the endpoints of .s as antipodal points. 



Lemma 3  The in-Gabriel-disk-test (p,s) can be executed on primitive variables with optimal degree 2. 

Sketch of proof: We show first that the test can be executed with degree 2, and then that such degree is 
optimal. Let c be. the center of the disk D[u, v]. Vertex p is outside D[u, v] if and only if d(p, c) - d(u, c) > 0, 
that in turn is equivalent to verifying that d2(p,c) - d2(u,c) > 0. Observe that d2(p,c) - d2(u,c) is a 
degree 2 polynomial if all variables involved are primitive variables. The fact that there cannot be a degree 1 
procedure that executes the test descends from Corollary 1. D 

Let D(S) be the Delaunay diagram of S. The brute-Force algorithm computes GG{S) by verifying, for 
every edge (u, v) € D(S), whether the Gabriel disk of u and v is empty and if so, by adding (u, v) to the set 
of edges of GG{S). 

Lemma 4 The brute-force algorithm computes the Gabriel graph of a set S of n points on the plane from 
the Delaunay diagram of S in 0(n2) time with optimal degree 2. 

Sketch of proof: The asymptotic bound on the time complexity immediately follows from the fact that the 
Delaunay diagram D(S) is planar and that n - 2 tests are executed for each edge of D(S) to verify whether 
it is also an edge of the Gabriel graph GG{S). Each test corresponds to the execution of a in-Gabriel-disk- 
test. Since all variables involved in such test are primitive, it follows from Lemma 3 that the degree of the 
algorithm is 2. Because of Theorem 2, degree 2 is optimal. D 

A linear-time algorithm to compute the Gabriel graph from the Delaunay diagram is based on Theorem 1 
and was first suggested by Matula and Sokal [19]. We refer to such algorithm as the conventional algorithm, 
since it is usually accepted by computational geometers as "the algorithm" to compute a Gabriel graph 
(see, for example [22, 21, 9]). The conventional algorithm consists of two steps. In the first step the Voronoi 
diagram V(S) of S is computed from D(S) and the coordinates of its vertices are stored with exact arithmetic, 
i.e. as rational numbers (pairs of integers). In the second step, for every edge e £ D{S) it is tested whether 
e properly intersects its corresponding dual edge ev e V(S). Unfortunately, as the next lemma shows, the 
conventional approach is characterized by a very high degree. 

Lemma 5 The conventional algorithm computes the Gabriel graph of a set S of n points on the plane from 

the Delaunay diagram of S in 0(7i) time with degree 6. 

Sketch of proof: Let e = (u, v) be a Delaunay edge and let ev = (p, q) be the corresponding dual edge in 
the Voronoi diagram. By the reasoning in the proof of of Lemma 2, determining whether e and ev properly 
intersect is equivalent to executing the following four tests: which-side-test (u,e„), which-side-test (v,e„), 
which-side-test (p,e), and which-side-test (q,e). 

Consider the which-side-test (u,e„). We show first that such test implies determining the sign of a degree 6 
multivariate polynomial, and then we show that such polynomial cannot be expressed as the product of lower 
degree polynomials. 

Let u = (xu,yu), let p = (xp,yp) be equidistant from three points of S a = (xa,ya), b = (xb,yb), 
c = (xc, t/c), and let q = {xq, yq) be equidistant from three points b = (xb, j«,), c = (xc, t/c), and d = (xd, yd)- 
Answering the which-side-test (u,e„) is equivalent to determining the sign of the following determinant. 

A = 
Vu 

VP 

2W„ 

YP 
2WP 
y, 

2W„ 

1 
2WcWa 

Xu    yu     i 
Xp   Yp    Wp 

Xa   Ya   W0 

A' 
2WvWa ' 

where 

id X, 

Xp = 4 + y2b 
4 + yl 

ya 

Vb 
Vc 

YP = 

Xa 

Xb 

Xc 

*l + y2a 
4 + yl 
*2c + 2/c 

wp = 
Xa ya 1 
Xb Vb 1 
Xc yc 1 

9' 
Yq, and Wq have similar expressions obtained replacing in the above determinants xc with Xd and 

yc with yd- The sign of A is studied by evaluating the signs of Wp, Wq and of A'. It can be easily verified 
that A' is a degree 6 multivariate polynomial. 
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Lemmas 4 and 5 exhibit a sharp trade off between computational efficiency and degree. Namely, the 
brute-force approach, based on the in-Gabriel-disk-test, has optimal degree 2 but is rather unefficient in terms 
of time complexity. On the other hand, the linear-time conventional approach, based on the which-side-test, 
requires the explicit computation of the Voronoi vertices and this dramatically affects the degree of the 
algorithm. 

Observe that a degree 6 algorithm implies that a fc-bit arithmetic unit can handle with native precision 
the computation of the Gabriel graph for points in a grid of size at most 2» x 2*. For example, if k = 32, the 
point that can be treated with native precision belong to a grid of size at most 26 x 26, that is unacceptably 
small for most of pattern recognition and computational morphology applications. 

One of the results of the next section is to close the gap between degree and time complexity shown by 
Lemmas 4 and 5. 

4    Computing and Checking with Optimal Degree 
In this section we present an alternative characterization of Gabriel graphs in terms of Delaunay diagrams 
and discuss two different applications of such characterization. A first application reconciles robustness with 
efficiency by providing a linear-time, optimal-degree algorithm that computes the Gabriel graph of a set of 
points on the plane from its Delaunay diagram. The second application shows an optimal-degree solution to 
the problem of checking the correctness of a program that computes Gabriel graphs. 

Our characterization generalizes a previous result presented in [2] to solve a graph drawing problem. The 
main difference between our characterization and the one underlying the conventional algorithm (Theorem 1) 
is that we are able to detect what edges of the Delaunay diagram belong to the Gabriel graph with a constant 
number of comparisons, but without looking at any dual edges. This allows us to design linear-time optimal- 
degree algorithms whose tests are of the type in-Gabriel-disk-test and involve only primitive variables. 

Theorem 3 Let D(S) be the Delaunay diagram of a finite set of distinct points on the plane and let (u,v) 
be an edge of D(S). Let f and f" be the two faces sharing (u,v). (u,v) is an edge of the Gabriel graph 
GG(S) if and only if one of the following conditions is verified. 

1. Both f and f" consists of more than three edges. 

2. f has more than three edges, f" is a triangle, and the angle opposite to (u, v) in f" is acute. 

3. Both f and f" are triangles and the angles opposite to (u, v) in both f and f" are acute. 

Sketch of proof: We start by proving the first Statement 1. If/' and /" consist of more than three edges, 
all vertices of /' (of /") are co-circular, by the definition of Delaunay diagrams. This implies that D[u, v] is 
completely contained in /' U /". Hence, D[u, v] is empty, since there cannot be any points in the interior of 
either /' or /". 

We prove now Statement 2. D[u, v] consists of two semi-circles: D'[u, v] is the semi-circle contained inside 
/', D"[u, v] is D[u, v] - D'[u, v]. By the same reasoning as in the proof of Statement 1, D'[u, v] is empty. 
Let q be the. vertex of /" opposite to edge (u, v). If Luqv is acute, then D"[u, v] is completely contained in 
the disk defined by the three vertices u, v, and q. But such disk is empty, since /" is a face of the Delaunay 
diagram. It follows that also D'[u,v], and hence D[u,v] are empty. Vice-versa, if (u,v) is an edge of the 
Gabriel graph, then q £ D[u, v], which implies that Luqv is acute. 

Finally, the proof of Statement 3 is a variation of the proof of Statement 2. □ 

4.1     Computing with optimal degree 
An optimal degree, linear-time algorithm that computes the Gabriel Graph from the Delaunay diagram 
directly descends from Theorem 3. Algorithm Optimal Gabriel has as input the Delaunay diagram of a set S 
of n distinct points on the plane and produces as output the Gabriel graph of 5. We make the assumption 
that the Delaunay diagram D(S) is correct, i.e. we assume that D(S) has been computed by an algorithm that 



correctly handles degenerate configurations of the input points such as collinearities and co-circularities. For 
example, one can use the algorithm of Guibas and Stolfi [12]. The Guibas-Stolfi algorithm robustly computes 
D(S) and stores it in a suitable data structure, called quad-edge, that allows to determine in 0(1) time for 
each edge (u, v) G D(S), what are the two faces sharing (u, v). 

In order to emphasize the simplicity of its implementation in practice, we give below a Pascal-like de- 
scription of Algorithm Optimal Gabriel. We denote with E(GG) the edges of the Delaunay diagram that are 
also edges of the Gabriel graph. Also, /' and /" denote the two faces sharing edge (u, v) G D(S). 

Algorithm Optimal Gabriel 
input: D(S). 

output: GG{S). 

begin 
E{GG) = 0 
for each edge (u, v) G D(S) 

do begin 
if both /' and /" have more than three vertices, 

then E(GG) = E(GG) U {(«, v)} 
if/' has more than three vertices and /" is a triangle A(uvq), 

then if Luqv < £• 

then E{GG) = E(GG) U {(u,«)} 
if/' is a triangle A(uvp) and /" is a triangle A(uvq), 

then if Lupv < f and Luqv < \ 

then E(GG) = E(GG) U {(u, v)} 

end 
end 

end Algorithm. 

Theorem 4 Let S be a finite set of n distinct points on the plane. Algorithm Optimal Gabriel computes the 
Gabriel graph of S from the Delaunay diagram of S in 0(n) time and with optimal degree 2. 

Sketch of proof: The correctness of Algorithm Optimal Gabriel derives from Theorem 3. The bound on the 
time complexity derives from the fact that at most two tests are executed for each edge (u, v) £ D(S), in order 
to determine whether (u,v) also belongs to E(GG). Observe that each of such tests is a in-Gabriel-disk-test 
executed on primitive variables. The optimality follows from Theorem 2 and from Lemma 3. □ 

4.2    Checking with optimal degree 
As a second application of Theorem 3 we study a geometric program checking problem. Namely, we tackle 
the problem of certifying the correctness of a program that computes a Gabriel graph of a set S of points. 

Let V be a program whose input is a finite set of distinct points on the plane and whose output 0(S) is 
claimed to be the Gabriel graph of S. A checker for program V verifies whether O(S) is actually the Gabriel 
graph of S. If the check is in the affirmative, than the checker certifies the correctness of 0(S); otherwise, 
it returns a whitness that 0(S) is not correct, i.e. some evidence that 0(S) cannot be a Gabriel graph. 

In what follows we present Algorithm Optimal Check. We assume that A computes O(S) by first computing 
the Delaunay diagram. This is a reasonable assumption since all known efficient algorithms compute Gabriel 
graphs by first constructing D(S) and then deleting from D(S) those edges that do not belong to GG(S) 
(see e.g. [15]). 

We follow the approach proposed by Mehlhorn et al. [20] to the verification of geometric algorithms. 
According to such approach, we slightly augment the tasks executed by program V in order to facilitate the 



checker. Namely, we ask V to output with O(S) also D(S). Observe that this does not affect the asymptotic 

performance of "P. , 
Algorithm Optimal Check receives as input 0{S) and D{S) and produces as output a certificate, that 

is either a message of correctness, or an edge (u,v) such that (u, t>) 6 0{S), but (u, v) $ D(S), or a pair 
< (u, v), p > where (u,») is an edge of 0(5) and p is a point of S such that p € D[u, v]. We assume that 
D{S) has been correctly computed. An efficient checker for a Delaunay diagram is presented in [20]. 

Algorithm Optimal Check 
input: 0(5), D(S). 
output: Certificate. 

begin 
error= false 
for each edge (u, v) G O(S) 

do begin 
if (u, v) G D{S) 
then begin 

for each face / such that (u, v) G / and / is a triangle A{uvp) 

do if Lupv > \ 

then begin 
print "Error: point p is in the Gabriel disk of («, v)" 

error = true 

end 

end 
else begin 

print "Error: edge (u, v) is not an edge of D(S)" 

error = true 

end 
end 
if not error then print "Program V computes the Gabriel graph of 5" 

end 
end Algorithm. 

Theorem 5 Algorithm Optimal Check verifies the correctness of an algorithm that computes the Gabriel 
graph of a finite set of n distinct points on the plane in 0(n) time and with optimal degree 2. 

Sketch of proof: The correctness of Algorithm Optimal Check is a consequence Theorem 3. The bound 
on the time complexity descend from the fact that at most two in-Gabriel-disk-test are executed for each 
(u, v) G 0{S). Since each in-Gabriel-disk-test is executed on primitive variables, from Lemma 3 the algorithm 
has degree 2. If degree 2 were not optimal, then there would exist a degree 1 procedure to detect whether 
an edge of the Delaunay diagram belongs or not to the Gabriel graph. Which contradicts Theorem 2. O 

Melhlhorn et al. [20] define the main requirements for a program checker as correctness, simplicity, and 
efficiency. Theorem 5 proves the correctness and the efficiency of Algorithm Optimal Check. Although there 
is not a formal quantifyer for estimating the simplicity of an algorithm, we believe that the easiness of the 
Pascal-like code, the optimal degree of the strategy, and the low number of geometric tests that are executed 
on each edge of 0{S) may give some evidence of the simplicity of the proposed approach. 



5    Open Problems 
Several questions remain open. For example, 

1. Extend the result of this paper to the robust computation of other proximity subgraphs of the Delaunay 
diagram. To this respect, a family of particular interest are the so-called ß-graphs [16, 23]. /3-graphs 
are an infinite family of proximity graphs for which the definition of proximity varies according to the 
value of a parameter ß. For values of ß such that 1 < ß < 2, ß-graphs are subgraphs of the Delaunay 

diagram. 
2 Study the degree of the problem of computing the Delaunay diagram of a set of points in the plane. 

It has been proven that the algorithm by Guibas and Stolfi [12] has degree 4 [18]. It would be very 
interesting to understand whether a lower degree is achievable. 

3. An immediate implication of Lemma 2 is that the problem of reporting the intersections among a finite 
set of segments on the plane, has degree 2. Although the segment intersection problem is a classical 
subject of study in computational geometry, none of the asymptotically efficient algorithms that solve 
the problem have optimal degree (see, e.g. [22]). On the other hand, a brute-force quadratic time 
algorithm is straight-forward. Closing the gap between asymptotic efficiency and optimal degree seems 
to be a very challenging task. 
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